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AN INTRINSIC THEORY OF SHELLS

YOSHIYUKI YAMAMOTO
University of Tokyo, Bunkyo-ku, Tokyo

Abstract—Stresses in a shell can be deduced from stress function tensors which are regarded as an extension
of the Maxwell-Morera stress function, while stress resultants and stress couples can be deduced from the shell
stress function of Gol’denveizer. In this paper the relation between the stress function tensors and the shell
stress function is investigated.

INTRODUCTION

IN MOST papers on the theory of shells, strains are deduced from displacements on the
basis of the theory of continua, while displacements are determined by the equilibrium
conditions for stress resultants and stress couples [1-3]. It is well known, however, that
the introduction of stress functions is effective in analysing deformations of cylindrical
and shallow shells [4, 5]. In Chien’s intrinsic theory {6] the stress for equilibrium is deter-
mined directly by considering the conditions of equilibrium and compatibility. Gol’den-
veizer [7] introduced a system of stress functions by examining the general solution of
the equilibrium equations. Recently Schaefer [8] and Giinther [9] developed a theory of
thin shells from the point of view of duality for displacements and stress functions.
Langhaar [10] introduced stress functions in the membrane theory of shells.

In the analysis of shells, stress functions are so determined that the strain components
derived from them satisfy the conditions of compatibility. Washizu [11] and Truesdell
{12, 13] introduced stress functions from the principle of virtual work and the conditions
of compatibility by the method of Lagrangean multipliers. This indicates the existence
of an important relation between stress functions and the corresponding condition of
compatibility [14]

In the present paper stress functions of a shell will be investigated on the basis of the
general theory of continua, and the relation between stress functions will be clarified.
It is assumed that the shell is subjected to neither body forces nor surface tractions. The
theory is effective not only for thin shells but also for shells of finite thickness. The
corresponding conditions of compatibility will also be derived.

1. MATHEMATICAL PRELIMINARIES

The configuration of a shell can be determined with reference to the Cartesian co-
ordinates x(i, j, k, I, h = I IL III). The curvilinear coordinates z'(r,s, t,u,v,w = 1,2, 3)
are so introduced that the middle surface IT coincides with the coordinate surface
z*> = 0 and the z3-curve (z! = const, z2 = const) is normal to the surface II. On the
surface I1, z°(p, 5,1, w = 1, 2) is regarded as a two-dimensional curvilinear coordinate.
The following relations are valid between the differentials, dx’ and dz’, of the coordinates ;

dx' = Aldz dz" = A} dx', (1
235
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. ox! . oz"
A:: X = x' A;:—Z‘ =
, Ixt

Zi, 2

where the summation convention is used and subscripts after commas indicate ordinary
differentidtion with respect to appropriate coordinates. Without loss of generality, it can
be assumed that

xt = x4z, 2%+ pi(zt, 23)2?, (3)
where p' is the unit normal vector on I1:
pp' =L
Then A: can be written as follows;
Al = AP+ B, 4)
where

A0 =A@ =0)=x% A= AP =0)=p

o . )
B,=p, By=0 (porw=12)
From the assumption it follows that
AJAY =0 AY'B, = 0. {6)
The fundamental tensor g,, of the curvilinear coordinate is given by
8o = ALAL = g2 +223h,,+(2%)*,,
g
83s = 803 833 =1,
where
g;())a = gpa(23 = 0) = AgiAgi
@)

h,, = Bj,A,,  1,, = BLB..
In this paper the parentheses ( ) used with indices indicate the mean with respect to
indices,
B, A7) = 3B, A5+ B;A)).
It can be shown that
e, 0L+ /(%)= A, r=p s=0o
A=< 1 r=s=23 )]
0 otherwise,
where
L =0 2
T NEI =4 =1 @ 9= (10

0 otherwise,
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g’ =1g% g=|gs = [1+22°H+(z>)*R)g° (11)
= ih R = 3{(h%)* —hth3)
(12
hy =g%h,  8%gn = 05

Let t = t(z*, z2) be the thickness of the shell. Then the surface boundaries I1, and
I1_ can be given by z® = +1t/2. Without loss of generality, it can be assumed that T1
and I1, are smooth surfaces.

The covariant derivative of a tensor T;* with respect to z* is defined by

. A
TI = Tis +{ i }T:S+{ . }T:‘ —{ }T:f, (13)
’ ’ r'u s'u tu

where { srt} is Christoftel’s symbol:

r r . ,
{ st} = { ts} = 8™Buis.y— 1Bst) = AiAL, = — AL A] (14)
£"8us = 5.

As for a tensor defined on II, two kinds of covariant differentiation can be defined. Let
T?* be a generic tensor on Il. The two-dimensional covariant derivative of T with
respect to z is given by the equation of the following form:

0 ’ 0
1oy = rre{ g, proe-{* Lo 19
g w Tw

1]
where { l;} is Christoffel’s symbol for II,
o

e l° p 0pary 0 0
= 3 = () = g% -4 . 16
{O’CO} {Uﬂ)}(z ) g (gw(a,t) igdt,w) ( )
The three-dimensional covariant derivative is defined as follows:
T??/Z) = Tf:)/?oa _hpr?p” +hZ)T1(:)33 + hthg3d' (17)
Since
30, 4 P 3
= 0 = —h s 3 = = p, = U,
{pw}(z ) = —hpa {3w}(z 0 = {3w} 0 (18)

it can easily be seen that

T2 = 0) = T,
if

T3z = 0) = T

If T?,,'; is appropriately assumed, T}, can also be defined.
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2. STRESS FUNCTION TENSOR FOR SHELLS

When the elastic body is not subjected to any body forces, the condition of equilibrium
in the body referred to Cartesian coordinates is

=
ol = 0.

Any stress distribution for equilibrium can be represented by using an appropriate stress
function tensor ¢**' which is considered as an extension of the Maxwell-Morera stress
functions:

ol = Yt = e Ty, (1)
where

YR = i = kil o Gy

@)
‘//i'j' = Wj'i' = 'tlieiki’ejlj"//ikﬂ
1 (ijk) is an even permutation of (I1I III)
et = ¢ = < —1 (ijk) is an odd permutation of (I 11 III) (3)
0 otherwise.
With reference to curvilinear coordinates, the condition of equilibrium becomes
0, =0, o =oAL, (4)
where
AT = A4S ... (5)
The stress can be written as
0" =Y = € Y (6)
where
Yy = AT = ey, } .
Vow = AdWiy = 2CrnCondt™
1 (rst) is an even permutation of (123)
J@™ = \/—:g—)em = <—1 (rst)is an odd permutation of (123) 8)
0 otherwise.
Since

€W pwitu— X o) = €€ Yo
it then follows that
Lemma 1. Two stress function tensors
Yo and Y, = Vow— X wiw) 9)

furnish the same stress distribution, where X, is an arbitrary vector.
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Now the following differential equations can be solved:
‘533 = Wsa*xs;s’-:‘;’aa”‘Xsa:{} (10)
&35 = ‘ffsa"‘%fxs‘ﬁ'Xa,a“2(}3£+3I§23+ T )X3} =0

or

X3,3 = 11’33 }
X332 +3023+ -~ I, ls = Wae3—~¥a3.0

By the use of a vector X, thus obtained, a stress function tensor V.., can be determined,
and can be adopted instead of y,,,. Then it follows that [16]

THEOREM 1. A stress function tensor Y, can be chosen so that
Y3s =3 =0 (11)
The corresponding stress is given by
o = 49‘“39“’3‘10[1{«»;3]3]

ﬂ.Ba — 22'"3 eamadi{:imﬁ}p} {12)

33 _ ,pt3 003
g7 = e’V '{"{f{w:ﬁﬂ'

In this paper the brackets [ ] used with indices indicate the mixing of indices;
‘/’t[m;a‘]p = %(‘!’tw;op “‘/’m:wp) }

‘1& [l = %{g{ﬂa;tﬂx - {!’to‘;ﬁip - g{pm:m + V‘f ;}e;wt}‘

3. THE STRESS RESULTANT AND COUPLE

Without loss of generality, it can be assumed that the shell under consideration is
simply connected. Let O and P be a fixed point and a generic point on the middle surface
TI, respectively. Let the points on the surface boundaries I1, and I1_ corresponding to
O and P be denoted by O, O_, P,, and P_, respectively:

x(Py) = x{(P)+p(P)/2.
It can be easily verified that
g,iizs_z_:‘biz?:l +¢li3§2 - 0
or
Yk R iR ),
This relation can be rewritten as,
\‘?Raﬂf’i?}ﬁ = ekin'% {‘f’ﬁ'ﬁ'“‘f‘ﬁ;ﬁ) = ey it n

The resultant, and the moment about the axes through the point O parallel to the axes x*,
of stresses associated with surface portion § in the shell can be expressed as a line integral
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along the boundary &S of S by virtue of the Green-Stokes formula [15, 14]:
v”; o.i_inj ds = jjs ll/ii’jh’i'hnj ds = %J‘as ‘//”,jh,i'ejhl dxl — eijk LS l//l[k,j] dx’, (2a)

e ||| ("—xO))o"n; 4 = ey | (x*—XHOW* yym; dS
= €xp; -”s {{O" = XxMOWF ™ ]y =9 1 3n; dS

= eun || {1 = XMOWF ] =4 i, dS

It

—emdk [0 XHOWI 3T o, dx'

A

== jﬁS [2(xh_ xh(o))!//l k,h) — l/’u‘:] dx’, (2b)

where n; is the unit normal vector on S.

Since the surface boundaries of the shell are free of external forces, the resultant and
the moment of stresses associated with a portion of the surface boundaries vanish. Hence
the functions

) Ps: s i P
WiPL) = ] e dxt = & iy, (3a)

2P.) =4[ L= RHOWH 3 e d¥
. (3)
= | 26— Oy~ Yu] dx'

are independent of the paths of integration on I, and are regarded as point functions
on I, . These functions can be easily rewritten as,

Py
lek(Pi) = _‘ij(Pi) = eijk\P(Pi) = Zj‘o l/’uk,j]dxl (4a)

29,P.) = 20— OWun Yl dx' = (6~ HON— [ (F ) ' (4b)
Let ¢, be such a tensor defined on I1, that
Yu(Py) = (xj(Pi)_xj(o))‘ij(P )= 2% (P,). (%)

It then follows from (4b) that

WP = [ Pyt dx (62)
or

W) = AP [ AL¥,+ ) d2, (6b)
where

l//r = A’:wka lIJrs = _\Psr = Az,;\l"jka !//rs = '//sr = Ail.:'//ﬂz
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When g, vanishes on a portion of the shell, ¥, ¥,,, and ¥, can be defined there, and
the relations hold

lp[r;s] = \Psr |//(r;s) = l/’sr' (7)
Now we define the vector functions Q' and @, on IT such that
P_ P P+ L0 2N
i _ Lijk - . ]
Qi(P) = &' (jo | jm jo_)zg,[k,j]dx, (8a)
P- P+ P+ O+
- _ _ _ i _ !
O(P) = Go_ + jp_ jo+ 50_)[2(351 X' (P)Wi, j— ¥ul dx
P_ P+ P4 O, )
= —(f, +1 =T 1 e = O = vl
+ e(xX/(P) — xI(O))Q(P), (8b)
where the integrals [5* ... and {5 ... are taken along certain paths on IT, and the

integrals [3+ ... and {8 ... along the z3-curves.
The stress resultant N and the stress couple Mf can be defined on IT1: Let P’ be a
neighboring point of P on I1. The relations hold:

APNPle,, 2 = | Aige,,ydzr a2 = ([ 4 {7 - o =1 Wiads ©a)

+
P P_

P .
AFME(Ple,, d2° = ey | (' —xH(P)Alo"e, 3 dz” d2°
P-

= _(]. o j- - j - .[ :i){Z(x" —X"P)Wigem—¥u} dx',  (9b)

P- P Py
where
z°(P") = z°(P) +dz° 2P)=0

A7 = A =0) La=eu(@=0 e,=¢

po3:
Then the expressions for N and M? become

N = AP [ 4io™ \/ <g—%) dz? (10a)

M2 = ¢%,4%° [ 2 Aio* \/ (;%) dz3 (10b)

M4 = 0. (10c)
For the sake of convenience, it will be assumed that
N3 =M =0.

Then N™ and M are considered as tensors defined on I1. From (8) it follows that
Q(P)—Qi(P) = O |42 d=°
L gePe P4 Py P_
= eUk(j‘P,_ + -‘P’. + j‘P; + jp+)ll/1[k’j] dxl (Ila)

= A%N?e,, dz°
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O (P)—DO(P) = D, ;A2 dz°
= —(jp +jP:+ + j*’* + j‘P—)[Z(xh_xh(o))‘pl[k,hl—l//zk] iy
| P- P P
el Ay dz” + y(x(P) — X (O 45" dz” (11b)
= A" MPe,, dz° +e,; Q0 AY dz2°
or
AYN™ = QF A%
AUM? + e QU AYe" = @y AY'e™, }
where

eOrst = erst(ZSZ 0)’ epa —_— 0pa3.

Hence there holds

THEOREM 2. The stress resultant N'* and the stress couple M} can be expressed in terms
of O = AYQ, and @, = AP'®; as:

NT! = Q/l/'a etd
(12)
M: = (q)r//a - e.?arQs)erd
These satisfy the equilibrium condition :
]\]7/1:r = Q;ﬂeOwS =0
M. = —(d)p//,t—eg,pﬂ/‘?,)e“ = egapNad = eapNad (13)
M3y, = —hEM} = €5,5NP7 = (J(g9)(N'2 = N?1),
From (10c) and (12) it is obvious that
Qp = 600(1)3//0. (14)

Then Q" and @, are Gol’denveizer’s stress functions. These are also equivalent to the
stress functions introduced by Schaefer [8] and Giinther [9].
Instead of ', the following stress function Q;, may be conveniently used:

Qp = Q0 = (J-Zi + j:_ - ﬂl - jZi)Z'ﬁz[k,ﬂ dx’

: N . (15)
Q= %eukgjk’ Qst — Ag;k — :)sﬁr

The relation (11a) can be rewritten as,

or _ Oingr
Qu A = epA) N'Pe,,.

An alternative expression for stress couples is defined by

M = "M? M = MP = M> = 0. (16)
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It then follows that
COROLLARY 2.1. Stress resultants and couples can be written in terms of Q,, and ®, as:

N#" = % e(}psteawﬂswm: e,e:eomgtai/w

N3a —_ %eo3pteo'wapt//w — %_ epteamnpt//w (17)
MP? = eptedm(q)ﬁ}w'*"q,tw)
Dy, +Q3, = 0. {18)
By virtue of (3) and (8), the functions ¥, Q, and ¥, can be written in the form,
; 3 . o irPe L6 !
QP = ‘P‘(P-)-‘I"(P+)+e"‘6h -j‘0“) Vi, 5y dx {19a)
P, L0 I !
QP) = ‘?;k(P—)‘"‘ij(P«r}*(L_ - 50‘)2#{’:{1;,33 dx {19b)
PYP) = —2W(P_)+2¥(P,)
P [0 A . !
~(]," = ] )2 = P OW g~ Yl dx (20)

+ Q3 (x(P)— xH{O)).
From (17}, (19) and (20}, it follows that

ra . 1,0rst o0 40ij éQi(P)
N = % e Asmk 5 x"}( P)
po — ot o 40ki|__©C Fe O+ (P
w = el e ([ [) Jrwm-ro TaDl

Then it can be seen that

LeMMA 2. Stress resultants and couples are independent of the integrals between O_ and
O, in the expressions for Q; and ®,. Accordingly, such terms can be omitted when Qj
and ©, are used as stress functions.

Hereafter such integrals will be omitted in the expressions for Q; and @,. It then
follows that

Q;(P) = WP )—¥u(P.) +j: py I (21a)
DYP) = Yy (P_ )~ (AP )~ x(ONF (P ) = Yi(P 1)+ (x/(P 1)~ x(O) ¥ ;(P.,)

+ ()~ FR(P ) IP) = 2O | 20— X P~ Y] O’
(21b)
= (P )= U (P )~ (P ) NP ) + (/P )~ FPIE (P )

P ;
[ A= s, s 22,
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Now the stress functions Q,, and @, are expressed in terms of W¥,; and y,:

THEOREM 3. Stress functions €),; and ©, are given in terms of ¥, and ¥, when 5, = 5
= 0:

Oy = =0y = AT (P, (P )= AL (P¥, o (P )+ ] AST 2y 22
' (22)
Q5 = —0Qy, = AZ(P_)E,5(P_)— AL(PL)¥,(P,)
D, = ALY (P)+ 393, (P) = AL(P )W, (P) ¥y (PL) }
23)
D3 = ‘l’s(P—)—'ﬂs(P+)9
where
ALS = AZAT. (24)

4. CONDITION OF COMPATIBILITY

The condition of compatibility can be deduced by the use of the principle of comple-
mentary virtual work: The work W done by the stress ¥/ = y™*/' |, has equilibrium in the
strain ¢;; should vanish. Hence the relation holds

W= Hj.aijeijdV =J.H Yt e dV

:J.H“’[ilj,uk]l//ikﬂ dV+1Ig =0,

where dV is the volume element. The integral I is given by the surface integral taken
over the whole surface of the shell;

Iy = H ( _Sij,kll’ikﬂ +8ij¢ikﬂ,k)nl ds, (2
where n; = n' is the outward unit normal vector on the surface. From (3) of Section 3, it
follows that

lPi.l = Eh i€kl
2, = [Hx"— MO — 1ihiiJe, o
= [(xh"xh(o))wi,l - Zth” ejj't]eihk-

Ji't

The stress function tensor W*/! can be expressed in terms of ¥ and ¥, on the surface
boundaries

l//ikjl’k — ‘I’i,kej”‘
} 3)

Yk = [— 26, 4 2(xP — xI(O)PT . Je.
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Introducing (3) into (2), and using (5) of Section 3, the following relation can be derived:
Iy = ( “.m + ”ﬂ ) ){ —giil— 2", + 2(xtk — x[k(o))‘“}m,z] + Gij‘yi,l}ejj('"'j’ ds

+ [integral on the edge boundary]

N

(f .( n T j J. . ) {egumnl 26, — 20x* ~ MO ™ jy] — gy ' + 550 g O1Y
— e Pen; dS
+ [integral on the edge boundary]

—(Hm + j J‘ n_)SU[i,ku]‘//heik"eﬂj'n 7 ds
+ [integral on the edge boundary]

i

Now the expression for W becomes

W= jj_[8['[5;u]t]wvwertuesuw dv +(ﬁn+ + j 5 n_)slr[sm]t]‘!’vnwe’ e dS

()
+ [integral on the edge boundary] = 0.

The condition that the work W vanishes for any y,,, and any y, is the condition of com-
patibility. Since ¥/, = 0, it follows that

THEOREM 4. The condition of compatibility can be expressed as:
Ri36 =0 throughout the shell 5)
th[sunw] =0 on Hi (6)

where

thsu = 4‘;[r[s;u]t]
Q)
= &gt — Eruyst ~ Etsyur + Eouzsr

Without loss of generality, it can be assumed that n, does not vanish on I, . Hence

the following relations hold:
R, =0 or R3i12 = Ry312=0 on I,. (®)

It can be easily verified that

Rrs12;3 +Rrs23;1 +Rrs31;2 =0

{Bianchi’s equality) or

p p p
R3012,3+2R35311,21— Ry 2{30} - 2Rp63[1{2]3} - 2R3p3[1{2]0}

]

0,

R1212,3~2R123[2,1]—R9212{1l;}—2R1p12{3l;}—2Rr23[1{231} _2R1r3[1{2'i2} =0.
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This can be regarded as a system of simultaneous linear differential equations of the first
order if R, ;,, satisfies (5). If R;,,, and R,,,, vanish on a surface z*® = f(z*, z%) in the
shell, they vanish throughout the shell:

LeMMA 3. When the conditions

Ri,3, =0 throughout a shell, )]
Ris12=Ri51, =0  onasurface z° = f(2', z%) in the shell (10)

hold, it follows that
R, =0 throughout the shell. (11)

By virtue of LEMMA 3, the condition R;,,, = 0 on I1, can be derived from the condition
R;,,, = 0 on Il_, and vice versa. Furthermore, the conditions (5) and (6) can be replaced
by

COROLLARY 4.1. The condition of compatibility can be expressed as:
Ry,3, =0 throughout the shell (12)
Ri3s12 = Ryz12 =0 on IL (13)

5. SIMPLIFICATION FOR THIN SHELLS

In this section it is assumed that the thickness of shells is small as compared with
the radii of curvature:

tho =0  2°h3 = 0.
It then follows that
A= AVAT =80 [Yag,d® = [y, e dz? 2 0.

Now (22) and (23) of Section 3 become

©y0(P) = W,u(P) = ¥, (P.) }
(1)
0,5(P) = ¥,5(P)—¥,(P)
O,(P) = Y, (P-)+5 W5, (PL) — (P )+ 5 ¥s,(P.)
@

Q3(P) = 3(P_)—y3(P.).

Furthermore, functions defined on I1, such as ¥,(P.) and ¢,(P.) may be regarded as
functions defined on IT;

VoPy) = ¥i(P)  YPy) =y, (P). 3)
Accordingly, the derivatives of these quantities with respect to z* can be defined by

lIIrs//w(P i’) = lP irs//u)(P) lllr'//w(l) i) = l// + r//w(P)' (4)
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By virtue of (6) of Section 3, the following relations hold:

l//p//t(P:t) = \Ptp+llltp or ‘Ptp = ‘l][ﬂ//t]
®)
\1’3//r(Pi) = Y.
From (7) of Section 3 and (19) of Section 1, it is naturaily assumed that
‘pt//:i = “\Ps//z = ¥;, l1’3//3 = 0. (6)
Since W3, = —¥3,., it can be verified that
Q= DQppg Ly =y, = =Dy, g

By virtue of COROLLARY 2.1, there holds

THEOREM 5. In the case of thin shells, stress resultants and couples are expressed by @,
alone:

NP7 = e"e™ @y,
30 _ 1

N> = ere 30, ®)
PO __ HPT,00,

M?? = e?%e"P,,,.

The function @, itself is expressed in terms of ¥, as:
t
(Dp(P) = lpp(P—)“‘/’p(P+)—§ (l//3//p(P—)+ w3//p(P+))

©3(P) = 3P ) —y5(P.).

In many cases, N3 and M*°/t are small as compared with N*°. As can be seen from
THEOREM 5, N3° and M*° depend principally upon ®,, and N*? upon ®;. Therefore,
®, may be disregarded in comparison to @, :

©

COROLLARY 5.1. When N3 and M*° are small enough, ®, may be omitted as compared
with ®;. In such a case, stress resultants and couples can be expressed in terms of ®5:

NP7 = e "Dy, — O3l,,,)
N3 = ee"°D;3 pi (10)
MP = orteme .

Since @;l,, can generally be omitted in comparison to @5, the expression for N*° of
(10) is equivalent to that in Donnell’s theory for cylindrical shells [4].

CONCLUSION

In this paper, stress distributions in a shell not subjected to any external forces have
been fully investigated in terms of stress function tensors. Stress resultants and stress
couples are derived from the shell stress function of Gol’denveizer which is related to
the stress function tensors. The corresponding condition of compatibility can be obtained
by using the principle of complementary virtual work. The shell stress functions of other
authors are derived from the stress function tensors.
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Résumé—Les contraintes dans une enveloppe peuvent étre déduites des tenseurs de la fonction de tension qui
sont considérés comme une extension de la fonction de tension Maxwell-Morera, tandis que les résultantes de
tension et les couples de tension peuvent étre déduits de la fonction de tension de Gol’denveizer. La relation
entre les tenseurs de la fonction de tension et la fonction de tension des enveloppes est étudiée dans cet article.

Zusammenfassung—Beanspruchungen in einer Schale konnen von den Beanspruchungs-Tensoren hergeleitet
werden, welche als eine Erweiterung der Maxwell-Morera Beanspruchungs Funktion angesehen werden kénnen,
wihrend Beanspruchungsresultanten und Beanspruchungs Kupplungen von der Schalenbeanspruchungs-
funktion von Gol'denveizer hergeleitet werden konnen. In dieser Abhandlung wird das Verhéltniss zwischen den
Funktionen Beanspruchungs Tensoren und der Hiilsenbeanspruchungs Funktionen untersucht.

AbcrpakT—Hanpskenns B 060/104ke MOTYT ObITh BBIBEAEHHBI HA TEH30DBI QyHKIMH HATIPSAKEHHUS , KOTOPbIE
pacCMaTpPHBAIOTC, KaK Npodo/bkeHMe (yHKUMM HanpsxeHHst Makceenta—Mopepa, B TO BpeMsi, Kak
PaBHOJEHCTBYIOILIME HANPsKEHHs W Napbl CHII HANPAXEHUS MOryT ObITh M30JUpPOBAHbl OT QYHKLMH Ha-
npsbxenus obonouku INonpenseiisepa. B 3To# cTaThe MCCNEAYETCH OTHOLIEHHE MEXLY TeH30paMi QyHKUHH
HanpsikeHus: ¥ GyHKuMel HanpsxenHs 060M04kH.



